Оперативная память

Алгоритм решения задачи, представленный в виде некоторого набора машинных команд и набора данных к задаче, записывается в специальное устройство запоминания — оперативное запоминающее устройство (ОЗУ). Объем оперативной памяти и время обращения к ней являются важнейшими характеристиками ЭВМ. Дело в том, что от объема ОЗУ зависит размер программы, т.е. объем задания, который вкладывается априори в ЭВМ. Естественно, чем больше ОЗУ, тем более сложные задачи может решить ЭВМ и тем больший объем исходной информации она может обрабатывать.

Единицей информации является 1 бит (объем информации, содержащейся в одном двоичном разряде). Если Вы звоните по телефону другу и хотите узнать, дома ли он, то, услышав его голос, Вы получите 1 бит информации, так как из двух возможных вариантов (друг дома; друга нет дома) реализовался один.

Однако 1 бит — это малый объем, поэтому современные ЭВМ параллельно обрабатывают целый набор двоичных разрядов, называемый «машинное слово».

В современной вычислительной технике широко используется такое понятие, как байт — 8 двоичных разрядов. Размер машинного слова обычно составляет величину, кратную 2 в степени n: один, два, четыре байта и т.д.

Когда речь идет об объеме памяти, то используется величина К, равная 210, т.е. 1024. Объем ОЗУ современных микроЭВМ составляет от единиц мегабайт до 256 и более Мбайт. Время обращения к ОЗУ — это время, затрачиваемое на выдачу одного слова из памяти (отчасти определяющее быстродействие ЭВМ). Обычно, время обращения микроЭВМ к оперативной памяти составляет от 0,01 до 0,1 мксек.

Каждая ячейка памяти (байт) имеет индивидуальный номер — адрес. Нумерация начинается с 0. Рассматриваемая машина имеет 16-разрядное слово, состоящие из двух байт. Следовательно, объем прямо доступной памяти составит 216= 64 кб, или 32 кслова. Адреса, относящиеся к оперативной памяти, носят название абсолютных адресов, в данном случае объем адресного пространства составляет 64 кб.

Выше упоминалось, что желательно иметь большой объем памяти. Однако здесь возникает техническое противоречие: энергонезависимая быстродействующая память оказывается дорогой и занимает относительно большой физический объем. Минимальным объемом и достаточным быстродействием обладает динамическая память, но для ее работы требуется постоянное питание.

Входной сигнал (0 или 1) запоминается на емкости, которая разряжается через эммитерный повторитель, имеющий высокое входное сопротивление.

динамическая память

Однако при интегральном исполнении величина емкости составляет пикофарады, а время хранения информации — мсек. Поэтому требуется режим регенерации, при котором сигнал с выхода ячейки регулярно записывается на вход. При отключении питания или режима регенерации содержимое ячейки теряется, что является крупным недостатком динамической памяти.

Память, не требующая регенерации, может быть реализована на триггерах, такая память может иметь большее быстродействие, но она дороже.

Существующие различные варианты энергонезависимой памяти можно разбить на два класса:

  • ПЗУ — постоянное запоминающее устройство и
  • ППЗУ — перепрограммируемое запоминающее устройство.

Принципиальное различие между ними состоит в том, что в ПЗУ информация заносится единственный раз и в дальнейшем ее изменить невозможно. В ППЗУ имеется возможность (различными способами в зависимости от конструкции) записать новую информацию.

Важно запомнить, что в области абсолютных адресов, т.е. тех ячеек, в которых хранятся готовые к исполнению команды и данные (один из принципов машины фон Неймана), могут находиться конструктивно различные банки (разделы) памяти. (Не надо путать функциональное понятие ОЗУ с его технической реализацией!)

Оставить комментарий

Вы должны авторизоваться для отправки комментария.